COPRODUCTION DEVELOPMENT OF MINERAL WOOL AND LOW NICKEL-FeNi BY FEEDING OF ALUFLUX

Theofani TZEVELEKOU1, Athanasia FLAMPouri1, Konstantinos PANTAZIS1, Paraskevi LAMPROPOULOU2, Dimitrios PAPOLIS2, BasiliOS TISIKOURAS3 Spyridon PAPAETHYMIOU4, Eygenia METAXA5

1ELKEM - Hellenic Research Centre for Metals S.A., 56thkim Athens-Lamia National Road, 32011 Dinoio, Greece
2University of Patras, Department of Geography, Section of Earth Materials, 26504, Patras, Greece
3UniversitiBrunei Darussalam, Faculty of Science, Physical and Chemical Analysis, JalanTunkuLink, Gadong BE1410, Bandar Seri Begawan, Brunei Darussalam
4National Technical University of Athens, School of Mining & Metallurgical Eng., Physical Metallurgy Lab, 9 Her. Polytechniou, Zografos, 15780, Athens, Greece

Introduction

Mineral wool is produced at the plant of FIBRAN in Greece by melting a mixture of mineral raw materials, amphibolite, limestone, dolomite, bauxite in Electric Arc Furnace (EAF) and subsequent centrifugal fibration of the melt (slag). Chemical- and mineralogical analysis of raw materials has been presented elsewhere[1]. After addition of adhesive resin, oil and special silica compounds, fibers enter the polystyrenatisation. Compressing and cutting machines are used to shape the final products in sheets and rolls of a yellowish to brown appearance, strongly depending on the iron oxide content (FeOx) of the raw materials.

Targets: Lighter (white) colored mineral wool products are desirable mostly for aesthetic purposes. The addition of ALUFLUX, a byproduct of the secondary aluminium alloys production of ELVAL plant in Greece, in the raw materials mix of FIBRAN has been studied. ALUFLUX’s main characteristics are: Al2O3 carrier (~40-45%), thermomiting reduction agent and energy media (Almet’25-30%, AlN*13-15%).

By the addition of ALUFLUX, besides partial bauxite replacement, the desirable %FeOx reduction of the produced slag was targeted followed by whitening of the produced mineral wool fibers, while preserving or improving the high quality specifications of the final product. Simultaneous iron and nickel recovery, through aluminothermic reduction, from amphibolite and bauxite in raw materials mixture, leading to the coproduction of low nickel FeNi, was investigated.

Use of recycled alumina-bearing raw materials in the mineral wool industry has been reported[2,3]. However, since these materials are processed from the melting of aluminum salt slag - a residue generated during aluminum remelting-, they have limited reduction efficiency and are energy downgraded compared to ALUFLUX due to significantly low Almetal content <3%.

Theoretical process model

A simplified theoretical model has been elaborated to predict the effect of ALUFLUX addition on the chemical composition and most important physico-chemical properties of the mineral wool melt. The expected co-produced metal analysis is also included. The model uses as variables the raw materials feed ratio, composition and melting temperature and includes fully parameterized mass balance, taking into account the thermodynamics of the heterogenous metallurgical reactions.

Calculation of slag basicity, density[4,5], surface tension[6] and electrical conductivity[7,8] are performed based on selected literature available equations. The viscosity toolbox was used for the estimation of slag viscosity[9]. The model has been used for the design of experiments for off-line productions setting and optimization function. It could be further optimized to include kinetics considerations.

Industrial campaigns

Two series of industrial campaigns with ~74%t and ~24%t ALUFLUX (A and B, respectively) in raw materials mix were performed in the plant of FIBRAN.

Bauxite consumption was reduced by 55% and 37%, respectively, relatively to standard process. Grain size distribution (mainly sandy gravel to gravel) and homogeneity of ALUFLUX allowed its unhindered mechanical incorporation in the raw materials mixture without any pre-treatment. Slag, fibers and metal sampling, and recording of critical operating process parameters, (melt temperature, electrical energy consumption) during the trials were performed.

Results

Totally, ~100t of lighter coloured mineral wool (compared to conventional products of the plant) have been produced, Figure 1.

![Figure 1: Mineral wool colour based on the iron oxide content](image)

The chemical analysis of the corresponding slag and metal were in close agreement to the theoretical predictions. Iron oxide reduction in the levels of 75% and 26% has been achieved, while nickel recovery in the metal was complete, leading to production of ~0.8% Ni-FeNi accumulated at the bottom of the EAF furnace. However, some areas of incomplete slag/metal separation were found denoting that further technical adjustments are required before the technique can be adopted by the industry. The involvement of the highly exothermic aluminothermic reduction, resulted in reduction of the electrical energy consumption of the process. The measured physical and chemical properties of the two final mineral wool products of the campaigns A and B are shown in Table 1.

![Figure 2: Backscattered images of: a) inclusions in product of Campaign A; b) fibers of Campaign A; c) fibers of Campaign B](image)

Table 1: Physical and mechanical properties of industrial trials’ products

<table>
<thead>
<tr>
<th>Properties</th>
<th>Product A</th>
<th>Product B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressive strength (kPa)</td>
<td>79.6</td>
<td>27</td>
</tr>
<tr>
<td>Tensile strength (kPa)</td>
<td>24.23</td>
<td>15.05</td>
</tr>
<tr>
<td>Point load at 5mm deformation (N)</td>
<td>723</td>
<td>611</td>
</tr>
<tr>
<td>Thermal conductivity, λ, W/ (m*K)</td>
<td>0.03827</td>
<td>0.03416</td>
</tr>
<tr>
<td>Water absorption 24hours, (kg/m2)</td>
<td>0.24</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Conclusions

It has been demonstrated that the use of ALUFLUX in the conventional production process of mineral wool in EAF as a partial substitute of bauxite, results in the co-production of lighter coloured mineral wool with high level of technological properties and a low Ni-FeNi metal. Realization of a circular economy concept with significant environmental and economic benefits can be achieved by suitable industrial adaptation of the process.

Acknowledgments

The research was carried out in the frame of the R&D project with acronym "Rock.FENIA" co-funded by the Industrial Research & Technology Development Program, ESPA 2007-2013, European Regional Development Fund ERDF (Project No 914-BET-2013). The present announcement is dedicated to the memory of Prof. D.C. Pamantopulos, inspirator of this proposed innovative process. Special thanks to the FIBRAN and ELVAL for their excellent collaboration in the course of this research.

References